EXPERIMENT. NO.1

REACTIVE FORCES IN SIMPLE SUPPORTED BEAM

Objective:-

To verify the reactions of beam & principle of moments with the help of simply supported beam

<u>Apparatus</u>: -

Simply supported beam apparatus, meter scale, weights etc.

Theory: -

A rigid body is said to be in equilibrium, when all forces whether, active & reactive forces acting on the body reduce to zero.

Thus the system of equilibrium forces, will not impart motion of translation or rotation of rigid bodies.

Therefore the equations of equilibrium are

 $\Sigma F_{\mathbf{X}} = 0, \Sigma F_{\mathbf{Y}} = 0, \Sigma \mathbf{M} = 0.$

Procedure: -

- a) Note the initial reading on the compression balance A & B when the beam is supported.
- b) Suspend two different weights from the sliding hook against any division marked on beam.
- c) Note the reaction on the beam given by reading of compression balance taking in to account the initial0 reading.
- d) Calculate the reaction at both ends analytically.
- e) Find out the % error in reactions.

Repeat the above procedure for different masses at different positions & take five reading.

Observation Table -

i.	Initial reading on scale A	=	0 N
ii.	Initial reading on scale B	=	0 N
iii.	Length of the beam (L)	= 1000	mm

Sr No	Reading on scale A (N)	Reading on scale B (N)	W1 (N)	W2 (N)	W3 (N)	X1 (mm)	x2 (mm)	x3 (mm)
1.	14.715	14.715	9.81	9.81	9.81	300	500	750
2.	16.677	23.544	9.81	9.81	19.62	300	500	750
3.	15.696	14.715	9.81	9.81	9.81	250	550	700
4.	20.601	18.639	9.81	19.62	9.81	250	550	700

Formulae: -

 $\sum \mathbf{M}_{\mathbf{A}} = \mathbf{0}$

 $\therefore R_{B} = W_{1} * (x_{1}) + W_{2} * (x_{2}) + W_{3} * (x_{3})$ L

 $\Sigma \mathbf{F}_{\mathbf{Y}} = \mathbf{0}$

 $\therefore \mathbf{R}_{\mathbf{A}} = \mathbf{W}_1 + \mathbf{W}_2 + \mathbf{W}_3 - \mathbf{R}_{\mathbf{B}}$

Results: -

Sr no.	Observed Reaction A (N)	Observed Reaction AAnalytical Reaction A% ErrorO Re(N)(N)(N)		Observed Reaction B (N)	Analytical Reaction B (N)	% Error	
1.	14.715	14.224	3.45	14.715	15.20	3.22	
2.	16.677	16.677	0	23.544	22.56	4.34	
3.	15.696	14.715	6.66	14.715	14.715	0	
4.	20.601	19.1295	7.69	18.639	20.110	7.3	
5.							

Conclusion: -

- 1. Studied coplanar parallel force system.
- 2. Observed value and analytical values of reactions are approximately same.
- 3. Some error occurred due to instrument & manual handling.

Sample Calculation

<u>EXPERIMENT. NO. 2</u> BELT FRICTION – FLAT BELTS

Objective: -

To determine coefficient of friction.

Apparatus: - Belt friction apparatus, Flat belt and Weights.

Theory: -

A) Law of friction –

Coulomb has conducted several experiments on friction, the results of which are summarized as laws of friction.

- 1) Total friction that can be developed is independent of the magnitude of area of contact.
- 2) The total friction that can be developed is proportional to the normal force.
- 3) Coefficient of kinetic friction is slightly less than the coefficient of static friction.

B) Static & Kinetic friction: -

The above laws of friction may be expressed by the following formula.

 $F_s = \mu_s \; N$

 $F_k = \mu_k N$

 $F_k < F_s$

 $F_s = Static frictional force$

 F_k = Kinetic frictional force

 μ_s = Coefficient of static friction

 μ_k = Coefficient of dynamic friction

C) Belt Friction :-

For adjusting lap angle β on drum, a pulley is used.(Assumption: The friction between pulley and belt is zero.)Driving force is generated by the flat belt passing over the pulley. The friction that is developed between a flexible belt and drum can be utilised for transmission of power and applying brakes.

D) Flat Belts:

In the figure, a pulley is driven in the direction as shown. It is evident that the tension T_1

 T_2 . T_1 is called *tight side* & T_2 is called *slack side tension*. The relation between T_1 & T_2 when slipping of the belt impends is given by :

 $T_1/T_2 = e^{\mu_{\beta}}$ Where, β = angle of lap in radians.

 μ = Coefficient of static friction

Case1:-

Determination of μ by maintaining β as constant.

- 1) Adjust the angle β by rotating the graduated disc such that desired angle β is observed below the pointer.
- 2) Clean the surfaces of belt & pulley.
- 3) By holding the belt, add known wt. on T₂ side (slack side.)
- 4) Adjust the weights on T_1 side such that the belt just starts sliding over the pulley.
- 5) Repeat the procedure for five different values of T_2 & tabulate the result.
- 6) Find the value of μ each time from following equation.

 $\mu = (1 / \beta) * log_e (T_1 / T_2)$

- 7) Plot the graph of T_1 Vs T_2 . Slope of this graph is 'm'.
- 8) Find μ from graph.

 $\mu = \log_e(m) / \beta$ (rad)

Case 2:-

Determination of μ by maintaining T₂ as constant (for flat belt).

- 1) Perform the experiment in the manner similar to case 1 by keeping T_2 as constant varying the value of β (lap angle).
- 2) Repeat the procedure for five different value of β and tabulate the result.
- 3) Find the value of μ every time from following equation.

 $\mu = (1 / \beta) * \log_e (T_1 / T_2)$

- 4) Plot the graph of \log_e (T₁) vs β .
- 5) Slope of this graph is 'm'
- 6) Find μ from the graph.

 $\mu = m =$ slope of the graph.

Observation Table:-

1. Flat Belt :

Case 1 : β **Constant =** Π / **2**

Sr.	T 1	T 2	μ
No.	(N)	(N)	$\mu = (1/\beta) * \log_{e} (T_{1}/T_{2})$
1.	24.52	9.81	0.58
2.	25.50	11.77	0.49
3.	27.46	13.73	0.44
4.	29.43	14.71	0.44
5.	31.39	15.69	0.44

From Graph

Slope = m = -----

 $\mu = \log_e(m) / \beta = ------$

Case 2 : $T_2 \text{ constant} = 1 \times 9.81 =$

Sr. No.	\mathbf{T}_1	β	μ
	(N)	(Rad)	$\mu = (1/\beta) * \log_{e} (T_{1}/T_{2})$
1.	14.71	Π/6	0.77
2.	17.65	Π/3	0.56
3.	24.52	Π/2	0.58
4.	25.50	2П/3	0.48
5.	31.39	5П / б	0.44

From Graph

Slope = m = -----

μ ='m' = -----

Sinhgad College of Engineering, Department of Civil Engineering

Sample Calculations: -

Sinhgad College of Engineering, Department of Civil Engineering Pa

Result: -

Flat Belt•	Values	of	
r at Duit.	v aruco	UI.	μ

Case 1 : β	Constant	Case 2: T ₂ Constant			
Analytical	Graphical	Analytical	Graphical		
0.478	0.441	0.51	0.408		

Conclusion: -

- Coefficient of friction analytical and graphical is approximately same.
- As the angle changes the value of coefficient of friction decreases
- Value of coefficient of friction depends on nature of surface area.

-	Date :
	EXPERIMENT
	CONCURRENT FORCE SYSTEM
	IN SPACE
9	

Diagram Spring balance Hooks Zaxs 53355 5 55 5555355 34 5 XIM 5 355 55555 0(0,00) Y axis Spàre force Setup

Procedure : i) The space force system is brought in equilibrium by placing some weights in the part and hanging the forth weight to the central vertical thread 2) Several times the system is disturbed and it is ensured that it comes back to its previous position. This confirms that the system is in stable equilibrium. The directions of the three strings are transformed and marked on the paper using a plum bob 4) x, y, 2 coordinates of the knot and three more arbitrary points on the inclined string (one on each string) are used for this purpose. The points are taken as far from each other as possible. This takes care of the accuracy of the directional measurement 5) The fourth string being vertical does not need a second point for transferring the direction. The vertical projection of the knot on to the paper is assumed to have coordinates (0,0,0). 6) Thus a record of observations consists of four weights and 2 coordinates of four pts AB, C, D. The x, Y cordinates are measured from the fraced positions on the paper It is assumed that the pulleys are frictionless, and hence the tension in the three strings is same as the weights they are supporting. 8) The following table shows the observations taken during the experiment. A percentile check is taken to ensure that the observations are within reasonable limits

										Sinhgad Inst	Da	te :		
Obs. tabl	pre	st.	Weight	Points	1 Car	traina	tos and	Exp	etimer	talli	of to	quitico	NYAD	2
	1	NO.	CWD	1 - 1110	X	lu	7	TAD	TEC	TO	TAD	Ten	FCO	
						1				1. 11/1				_
).	400gm	A	0	60	100	0 -	MA	7.				
			= 3,92×N	B	100	90	100	2.3	2.9	3.4	1.8	4.36	-4.58	_
				С	40	0	100	0	mari	1	-		5	_
s		-		0	60	40	68							
			1	11.0-1	80.0	1200	00	17 :	nal		-			
	5	2	500 gm	A	0	20	100							
	-	3	=4.90 pm	B	60	100	100	3.3	2.1	4:0	-4.04	-1.85	-3.87	
-				С	100	30	100	123		-				-
N.1.		_	14	D	59	39	64	aar	100	4				-
					Tare	- hand	1		-					-
	(0)	3.	350 gm	A	0	60	100	= 1	28			-		
	-	81	= 3:43 N	B	90	100	100	2.3	2.3	3.2	-4.2	-0.539	-3.99	-
		-		С	80	0	100			-		1 april 1		-
	-	1		D	61	39	68	- 0	X	-				_
	-									~	7			2
					-		and le	1.10	011		-			-
· · · ·	Ca	lcu	lations	Weh	ave,	W= 3.	92 RN		347					-
					.0	ō.	0 5	11	-		- ,			
		-		Nou	11	<u> </u>	FXY	ther)					-
	al		12.0 0.0		- [~	2.)	ALL		1.)	1 (-		21		
		-		<u>A</u>	- (1)	2- (1)	170	92-1	11)	7(2	2-2	inr		-
						(22-)	$(1)^{2} + ($	92-1	g1)-7	(22	721).			-
	A			- 1	11 .							-		
155-101				JU	this co	ase,	- 40%						-	
	5		5217	T		Tori	12		$\widehat{()}$					
			1]	HD -	THD >	1 JAD		U			1	-	
			381210	100	Dest		2015							
			-						-					
			No. 2 and a starter				Carl and							

$$\frac{1}{28} = \frac{1}{28} = \frac{1}{28}$$

-

Prom (S) and (C)

$$\overline{T_{cD}} = T_{cD} (-0.19) - 0.266 j - 0.613 P)$$

 $\overline{T_{cD}} = T_{cD} (-0.19) - 0.266 j - 0.613 T_{cD} R$... (D)
 $\overline{T_{cD}} = -0.19T_{cD} j - 0.266 T_{cD} j - 0.613 T_{cD} R$... (D)
 \overline{P} iso, $\overline{W} = W \overline{\lambda}$
 $\overline{W} = -3.92 R$... (D)
 \overline{P} dding \hat{I} , \hat{J} , \hat{I} terms separately
 $0.846 T_{AD} - 0.55 T_{BD} - 0.19 T_{CD} = 0 \dots$ (E)
 $-0.48 T_{AD} - 0.69 T_{BD} - 0.266 T_{CD} = 0 \dots$ (E)
 $-0.48 T_{AD} - 0.44 T_{BD} - 0.613 T_{CD} = 3.92 \dots$ (D)
Solving (D), (D), (D) simultaneously
 $T_{AD} = 1.8 \text{ kN}$
 $\overline{T_{AD}} = -4.58 \text{ kM}$
 $T_{CD} = -4.58 \text{ kM}$
Conclusion R: studied space Fatre system (non coplanar, concurrent
force system. Tension experimentally and analytically
 $are sitter ent dive to instrumental error r.$

Date : Sinhgad Institutes C 1 -1 -----*

Aim To verify parallelogram law of forces with the help of Gravesand's apparatus. pparatus Wooden board, Gravesand's apparatus, paper sheet, weight, thread, pans, set square, pencil, drawing sheet and pin, etc. Parallelogram. law of forces' states that if a particle is acted by the two forces represented in magnitude and direction by the two sides of heary a parallelogram drawn from a point then the resultant is completely represented by the diagonal passing through the same point The conditions at equilibrium Zfx=0, Zfy=0 and ZM=0 Parallels gram'law of forces Phalytical Method : Measure the angles of and by using resultant formula R, R' = NP2 + Q2 + 2 PQ coso Graphical Method ? Cut of = P and OB = P in suitable scale. from A draw AC parallel to OB and BC parallel to OA.R, represents resultant force of foore P and Q

Scanned with CamScanne

EXPERIMENT. NO. 5 COEFFICIENT OF RESTITUTION

Objective: -

To determine Coefficient of Restitution.

<u>Apparatus</u>: -

Meter scale, Rubber ball, Table tennis ball, Marble ball etc.

Theory: -

For two bodies A & B, if $u_1 \& u_2 =$ initial velocity of A & B respectively before impact and $v_1 \& v_2 =$ final velocity of A & B respectively after impact, then the coefficient of restitution (e) is equal to the ratio of the relative velocity of the particles' separation just after impact ($v_2 - v_1$) to the relative velocity of the particles' approach just before impact ($u_1 - u_2$). (Consider $u_1 > u_2$)

$$e = \left\{ \underbrace{v_2 - v_1}{u_1 - u_2} \right\}$$

For perfectly elastic bodies, e = 1 & perfectly plastic bodies e = 0. In practice, however no material is perfectly elastic or plastic. Hence the value of 'e' is always between 0 & 1

Coefficient of restitution can be approximately calculated by bouncing spherical balls against a rigid support. e.g. a heavy slab. The object B in this case is fixed & having zero velocity.

 \therefore u₁ = $\sqrt{2g}h_1$, v₁ = $-\sqrt{2g}h_2$ (against gravity), u₂ = v₂ = 0 (as floor is stationary),

$$\therefore e = - \left\{ \begin{array}{c} v_1 \\ \hline u_1 \end{array} \right\} \qquad \therefore e = \sqrt{h_2 / h_1}.$$

Procedure: -

- 1) Drop rubber ball vertically from a height (h_1) .
- 2) Record the height at which the rubber ball bounces back (h_2) .
- 3) Calculate the coefficient of restitution.
- 4) Take three more readings with different height h_1 .
- 5) Calculate coefficient of restitution for other balls by repeating the above procedure.

Sample Calculations: -

Plastic - i) hi = 1000 mm, h. h2 = 410 mm e : e : hz= 410 = 0,640 hi 1000 na n in hi i v Sponeg. Sponge - ii) h = 100mm h2 = 370 mm $h_2 = 370 = 0.608$ · . e = n1 11000 ut as chasash I uptivities to trainfloor and Rubber - iii, h = 1000 mm, h = 260 mm, i. e= h2 = 460 = 0,67 Vhi 11000 -Bouncy - ir) h1=1000mm, h2 = 730 mm · e = h2 = 730 = 0.85 V1000 bi

Observation table: -											
Sr. No.	Object	h1 (mm)	h2 (mm)	$e = (h_2/h_1)^{1/2}$	Avg.						
1		1000	410	0.64							
2	Plastic	1000	430	0.65	0.632						
3		1000	370	0.608							
1		1000	370	0.608							
2	Sponge	1000	360	0.6	0.608						
3		1000	380	0.616							
1		1000	460	0.67							
2	Rubber	1000	520	0.72	0.703						
3		1000	530	0.72							
1		1000	730	0.85							
2	Bouncy	1000	680	0.82	0.823						
3		1000	650	0.8							

Result: -

Sr. no	Object	Coefficient of restitution
1	Plastic	0.632
2	Sponge	0.608
3	Rubber	0.703
4	Bouncy	0.823

Conclusion: -

The coefficient of restitution depends on the type of material also on shape and size. The value of 'e' vary from 0 to 1. Here coefficient of restitution is more of bouncy ball as compared to plastic, sponge and rubber.

EXPERIMENT. NO. 4

CURVILINEAR MOTION

Objective: -

To study kinematics of curvilinear motion of a particle.

<u>Apparatus</u>: -

Cycle rim fixed in a vertical plane, balls of different materials & different sizes, scale, powder, thread.

Theory: -

When a particle moves along a curve other than a straight line, then the particle is said to be in curvilinear motion.

Instantaneous Velocity is given by

$$\overline{V} = \frac{dr}{dt}$$

Where, r is position vector.

Instantaneous acceleration is given by,

$$\overline{a} = \frac{dv}{dt}$$

The particle starts from point A and leaves at point B. (Refer Fig.)

Hence by applying the Work Energy Principle

Energy at
$$A = Energy$$
 at B

$$\therefore$$
 mgr = mg (rcos θ) +1/2 mv²

$$\therefore$$
 gr = gr cos θ + 1/2 v²

$$\therefore v^2 = 2gr (1 - \cos\theta)s$$

$$V = \sqrt{2gr(1 - \cos\theta)}$$

Hence v is the velocity at point B.

At point B,

$$\frac{mv2}{r} = mg\cos\theta$$
$$\frac{m(2gr)(1-\cos\theta)}{r} = mg\cos\theta$$
$$\therefore 2-2\cos\theta = \cos\theta$$
$$\therefore 2 = 3\cos\theta$$
$$\pm \cos\theta = 2/2$$

 $\therefore \cos\theta = 2/3$

$$\therefore \theta = \cos^{-1} (2/3)$$

As the particle leaves the rim at point B, it follows principle of projectile motion and falls to the ground at distance 'b'.

The path followed is tangential.

s= ut + ¹/₂ at²
y = (usin
$$\theta$$
)t- ¹/₂ gt²
r(1 + cos θ) = (u sin θ)t - $\frac{1}{2}$ gt 2

$$r(1+\frac{2}{3}) = \sqrt{2gr(1-\cos\theta)} \quad (\sin\theta) \times t - \frac{1}{2} gt^{2}$$

$$\frac{5}{3}r = \sqrt{2 \times 9.81 \times r(1-\frac{2}{3})} \sqrt{\frac{5}{3}} \times t - \frac{1}{2} \times 9.81 \times t^{2}$$

$$t = 0.42 \sqrt{r}$$
Distance $b = (u\cos\theta)t + r\sin\theta$

$$\therefore b = (\sqrt{2gr(1 - \cos\theta)} \times \cos\theta(0.42\sqrt{r}) + \sqrt{\frac{5}{3}} \times r)$$

$$\therefore b = 2.55 \sqrt{r} \times \frac{2}{3} (0.42) \sqrt{r} \neq (\frac{5}{3}) r$$

$$\therefore b = 1.456 r$$

Procedure: -

- 1. Measure the diameter of rim.
- Place the ball / marble on circular path at the highest position A. Allow it to move along path AB. The ball / marble will follow and leave circular path at B, and follow trajectory BC and hit the surface at C.
- 3. Mark point B on the rim & point C on the platform by spreading powder on circular track and ground.
- 4. Measure horizontal distance DC on ground.
- 5. Find angle θ through which particle move in circular path.
- 6. Compare distance DC and angle θ with analytical values.
- 7. Compare results with analytical solution.

Analytical solution:-

 $\cos\theta = 2/3$ $\theta = \cos^{-1}(2/3)$ $\theta = 48.18^{\circ}$ b = 1.456 (r)b = 1.456 (325) = 473.2 mm

 $\therefore \theta_{analytical} = 48.18^{\circ}$

 \therefore b analytical = 473.2 mm.

Sample Calculations: -

Observation table:-

Sr.	Horizontal distance b (mm)			Arc length	θobs	s = l/r	Arra Dog	% orror
No.	B obs (mm)	b ana (mm)	% error	AB = I	Rad	Deg.	Oana Deg.	/0 61101
1	490	473.2	-3.55	250	0.98	56.15	48.18	-15
2	468	473.2	1.11	340	1.33	76.2	48.18	-58
3	464	473.2	1.98	329	1.29	73.91	48.18	-53

Conclusion: -

The analytical and practical distance in above experiment is same. Even the analytical and practical value of angle is approximately equal.